y=[x-(1+2i)][x-(1-2i)](x+1)(x-2)

Simple and best practice solution for y=[x-(1+2i)][x-(1-2i)](x+1)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=[x-(1+2i)][x-(1-2i)](x+1)(x-2) equation:


Simplifying
y = [x + -1(1 + 2i)][x + -1(1 + -2i)](x + 1)(x + -2)
y = [x + (1 * -1 + 2i * -1)][x + -1(1 + -2i)](x + 1)(x + -2)
y = [x + (-1 + -2i)][x + -1(1 + -2i)](x + 1)(x + -2)

Reorder the terms:
y = [-1 + -2i + x][x + -1(1 + -2i)](x + 1)(x + -2)
y = [-1 + -2i + x][x + (1 * -1 + -2i * -1)](x + 1)(x + -2)
y = [-1 + -2i + x][x + (-1 + 2i)](x + 1)(x + -2)

Reorder the terms:
y = [-1 + -2i + x][-1 + 2i + x](x + 1)(x + -2)

Reorder the terms:
y = [-1 + -2i + x][-1 + 2i + x](1 + x)(x + -2)

Reorder the terms:
y = [-1 + -2i + x][-1 + 2i + x](1 + x)(-2 + x)

Multiply [-1 + -2i + x] * [-1 + 2i + x]
y = [-1[-1 + 2i + x] + -2i * [-1 + 2i + x] + x[-1 + 2i + x]](1 + x)(-2 + x)
y = [[-1 * -1 + 2i * -1 + x * -1] + -2i * [-1 + 2i + x] + x[-1 + 2i + x]](1 + x)(-2 + x)
y = [[1 + -2i + -1x] + -2i * [-1 + 2i + x] + x[-1 + 2i + x]](1 + x)(-2 + x)
y = [1 + -2i + -1x + [-1 * -2i + 2i * -2i + x * -2i] + x[-1 + 2i + x]](1 + x)(-2 + x)

Reorder the terms:
y = [1 + -2i + -1x + [2i + -2ix + -4i2] + x[-1 + 2i + x]](1 + x)(-2 + x)
y = [1 + -2i + -1x + [2i + -2ix + -4i2] + x[-1 + 2i + x]](1 + x)(-2 + x)
y = [1 + -2i + -1x + 2i + -2ix + -4i2 + [-1 * x + 2i * x + x * x]](1 + x)(-2 + x)

Reorder the terms:
y = [1 + -2i + -1x + 2i + -2ix + -4i2 + [2ix + -1x + x2]](1 + x)(-2 + x)
y = [1 + -2i + -1x + 2i + -2ix + -4i2 + [2ix + -1x + x2]](1 + x)(-2 + x)

Reorder the terms:
y = [1 + -2i + 2i + -2ix + 2ix + -4i2 + -1x + -1x + x2](1 + x)(-2 + x)

Combine like terms: -2i + 2i = 0
y = [1 + 0 + -2ix + 2ix + -4i2 + -1x + -1x + x2](1 + x)(-2 + x)
y = [1 + -2ix + 2ix + -4i2 + -1x + -1x + x2](1 + x)(-2 + x)

Combine like terms: -2ix + 2ix = 0
y = [1 + 0 + -4i2 + -1x + -1x + x2](1 + x)(-2 + x)
y = [1 + -4i2 + -1x + -1x + x2](1 + x)(-2 + x)

Combine like terms: -1x + -1x = -2x
y = [1 + -4i2 + -2x + x2](1 + x)(-2 + x)

Multiply [1 + -4i2 + -2x + x2] * (1 + x)
y = [1(1 + x) + -4i2 * (1 + x) + -2x * (1 + x) + x2(1 + x)](-2 + x)
y = [(1 * 1 + x * 1) + -4i2 * (1 + x) + -2x * (1 + x) + x2(1 + x)](-2 + x)
y = [(1 + 1x) + -4i2 * (1 + x) + -2x * (1 + x) + x2(1 + x)](-2 + x)
y = [1 + 1x + (1 * -4i2 + x * -4i2) + -2x * (1 + x) + x2(1 + x)](-2 + x)
y = [1 + 1x + (-4i2 + -4i2x) + -2x * (1 + x) + x2(1 + x)](-2 + x)
y = [1 + 1x + -4i2 + -4i2x + (1 * -2x + x * -2x) + x2(1 + x)](-2 + x)
y = [1 + 1x + -4i2 + -4i2x + (-2x + -2x2) + x2(1 + x)](-2 + x)
y = [1 + 1x + -4i2 + -4i2x + -2x + -2x2 + (1 * x2 + x * x2)](-2 + x)
y = [1 + 1x + -4i2 + -4i2x + -2x + -2x2 + (1x2 + x3)](-2 + x)

Reorder the terms:
y = [1 + -4i2 + -4i2x + 1x + -2x + -2x2 + 1x2 + x3](-2 + x)

Combine like terms: 1x + -2x = -1x
y = [1 + -4i2 + -4i2x + -1x + -2x2 + 1x2 + x3](-2 + x)

Combine like terms: -2x2 + 1x2 = -1x2
y = [1 + -4i2 + -4i2x + -1x + -1x2 + x3](-2 + x)

Multiply [1 + -4i2 + -4i2x + -1x + -1x2 + x3] * (-2 + x)
y = [1(-2 + x) + -4i2 * (-2 + x) + -4i2x * (-2 + x) + -1x * (-2 + x) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [(-2 * 1 + x * 1) + -4i2 * (-2 + x) + -4i2x * (-2 + x) + -1x * (-2 + x) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [(-2 + 1x) + -4i2 * (-2 + x) + -4i2x * (-2 + x) + -1x * (-2 + x) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [-2 + 1x + (-2 * -4i2 + x * -4i2) + -4i2x * (-2 + x) + -1x * (-2 + x) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [-2 + 1x + (8i2 + -4i2x) + -4i2x * (-2 + x) + -1x * (-2 + x) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [-2 + 1x + 8i2 + -4i2x + (-2 * -4i2x + x * -4i2x) + -1x * (-2 + x) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [-2 + 1x + 8i2 + -4i2x + (8i2x + -4i2x2) + -1x * (-2 + x) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [-2 + 1x + 8i2 + -4i2x + 8i2x + -4i2x2 + (-2 * -1x + x * -1x) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [-2 + 1x + 8i2 + -4i2x + 8i2x + -4i2x2 + (2x + -1x2) + -1x2 * (-2 + x) + x3(-2 + x)]
y = [-2 + 1x + 8i2 + -4i2x + 8i2x + -4i2x2 + 2x + -1x2 + (-2 * -1x2 + x * -1x2) + x3(-2 + x)]
y = [-2 + 1x + 8i2 + -4i2x + 8i2x + -4i2x2 + 2x + -1x2 + (2x2 + -1x3) + x3(-2 + x)]
y = [-2 + 1x + 8i2 + -4i2x + 8i2x + -4i2x2 + 2x + -1x2 + 2x2 + -1x3 + (-2 * x3 + x * x3)]
y = [-2 + 1x + 8i2 + -4i2x + 8i2x + -4i2x2 + 2x + -1x2 + 2x2 + -1x3 + (-2x3 + x4)]

Reorder the terms:
y = [-2 + 8i2 + -4i2x + 8i2x + -4i2x2 + 1x + 2x + -1x2 + 2x2 + -1x3 + -2x3 + x4]

Combine like terms: -4i2x + 8i2x = 4i2x
y = [-2 + 8i2 + 4i2x + -4i2x2 + 1x + 2x + -1x2 + 2x2 + -1x3 + -2x3 + x4]

Combine like terms: 1x + 2x = 3x
y = [-2 + 8i2 + 4i2x + -4i2x2 + 3x + -1x2 + 2x2 + -1x3 + -2x3 + x4]

Combine like terms: -1x2 + 2x2 = 1x2
y = [-2 + 8i2 + 4i2x + -4i2x2 + 3x + 1x2 + -1x3 + -2x3 + x4]

Combine like terms: -1x3 + -2x3 = -3x3
y = [-2 + 8i2 + 4i2x + -4i2x2 + 3x + 1x2 + -3x3 + x4]

Solving
y = -2 + 8i2 + 4i2x + -4i2x2 + 3x + 1x2 + -3x3 + x4

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Simplifying
y = -2 + 8i2 + 4i2x + -4i2x2 + 3x + 1x2 + -3x3 + x4

See similar equations:

| 1+4v=121-v | | 5x+40+4x-9=180 | | 3z+4(z-2)=7+z | | 3x-8=7x+32 | | 5y*4-2y=9 | | 160-3x=4x | | 360.25=190+0.75 | | X^4-7=50 | | -20x-2x=2x+4 | | 15x+20-20=13x+4 | | c=1+4v | | 0=4x^2-1 | | 5y+114=90 | | 25-55+(85+75)=x | | -4-2z=3+5z | | x-10+14=-2 | | 83-3=n-5 | | 6x+2x-8=8 | | X+16=8x+9 | | (x+7)+10=73 | | 3q+1=-3.6(a-1) | | 2x+4y+z=10 | | 5y-4-2y=9 | | 3ab-7ab= | | 1.2y=-1.43 | | 5p+6=12-p | | (x-7)+10=73 | | 105-3x=4x | | 6x+3+2x+6=33 | | u-4+2(6u+4)=-2(u+7) | | 74x+6x= | | x-8+15=-2 |

Equations solver categories